Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Infect Public Health ; 14(7): 845-851, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1244768

ABSTRACT

BACKGROUND: Novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. However, data concerning the epidemiological features, viral shedding, and antibody dynamics between asymptomatic SARS-CoV-2 carriers and COVID-19 patients remain controversial. METHODS: We enrolled 193 SARS-CoV-2 infected subjects in Ningbo and Zhoushan, Zhejiang, China, from January 21 to March 6, 2020. All subjects were followed up to monitor the dynamics of serum antibody immunoglobulin M (IgM) and IgG against SARS-CoV-2 using colloidal gold-labeled and enzyme-linked immunosorbent assays. RESULTS: Of those, 31 were asymptomatic SARS-CoV-2 carriers, 148 symptomatic COVID-19 patients, and 14 presymptomatic COVID-19 patients. Compared to symptomatic COVID-19 patients, asymptomatic carriers were younger and had higher levels of white blood cell and lymphocyte, lower level of C-reactive protein, and shorter viral shedding duration. Conversion of IgM from positive to negative was shorter in asymptomatic carriers than in COVID-19 patients (7.5 vs. 25.5 days, P = 0.030). The proportion of those persistently seropositive for IgG against SARS-CoV-2 was higher in COVID-19 patients than in asymptomatic carriers (66.1% vs. 33.3%, P = 0.037). Viral load was higher in symptomatic patients than presymptomatic patients (P = 0.003) and asymptomatic carriers (P = 0.004). Viral shedding duration was longer in presymptomatic COVID-19 patients than in asymptomatic carriers (48.0 vs. 24.0 days, P = 0.002). Asymptomatic carriers acquired infection more from intra-familial transmission than did COVID-19 patients (89.0% vs. 61.0%, P = 0.028). In 4 familial clusters of SARS-CoV-2 infection, asymptomatic carriers were mainly children and young adults while severe COVID-19 was mainly found in family members older than 60 years with comorbidities. CONCLUSION: Asymptomatic carriers might have a higher antiviral immunity to clear SARS-CoV-2 than symptomatic COVID-19 patients and this antiviral immunity should be contributable to innate and adaptive cellular immunity rather than humoral immunity. The severity of COVID-19 is associated with older age and comorbidities in familial clustering cases.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Viral , Child , China/epidemiology , Humans , Seroconversion , Virus Shedding , Young Adult
2.
Disease Surveillance ; 35(2):126-131, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-824442

ABSTRACT

Objective: To use moving epidemic method (MEM) to study the epidemic intensity of seasonal influenza epidemic in Ningbo, establish influenza surveillance and early warning mechanism and provide evidence for the prevention and control of influenza.

3.
JAMA Intern Med ; 180(12): 1665-1671, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-738931

ABSTRACT

Importance: Evidence of whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), can be transmitted as an aerosol (ie, airborne) has substantial public health implications. Objective: To investigate potential transmission routes of SARS-CoV-2 infection with epidemiologic evidence from a COVID-19 outbreak. Design, Setting, and Participants: This cohort study examined a community COVID-19 outbreak in Zhejiang province. On January 19, 2020, 128 individuals took 2 buses (60 [46.9%] from bus 1 and 68 [53.1%] from bus 2) on a 100-minute round trip to attend a 150-minute worship event. The source patient was a passenger on bus 2. We compared risks of SARS-CoV-2 infection among at-risk individuals taking bus 1 (n = 60) and bus 2 (n = 67 [source patient excluded]) and among all other individuals (n = 172) attending the worship event. We also divided seats on the exposed bus into high-risk and low-risk zones according to the distance from the source patient and compared COVID-19 risks in each zone. In both buses, central air conditioners were in indoor recirculation mode. Main Outcomes and Measures: SARS-CoV-2 infection was confirmed by reverse transcription polymerase chain reaction or by viral genome sequencing results. Attack rates for SARS-CoV-2 infection were calculated for different groups, and the spatial distribution of individuals who developed infection on bus 2 was obtained. Results: Of the 128 participants, 15 (11.7%) were men, 113 (88.3%) were women, and the mean age was 58.6 years. On bus 2, 24 of the 68 individuals (35.3% [including the index patient]) received a diagnosis of COVID-19 after the event. Meanwhile, none of the 60 individuals in bus 1 were infected. Among the other 172 individuals at the worship event, 7 (4.1%) subsequently received a COVID-19 diagnosis. Individuals in bus 2 had a 34.3% (95% CI, 24.1%-46.3%) higher risk of getting COVID-19 compared with those in bus 1 and were 11.4 (95% CI, 5.1-25.4) times more likely to have COVID-19 compared with all other individuals attending the worship event. Within bus 2, individuals in high-risk zones had moderately, but nonsignificantly, higher risk for COVID-19 compared with those in the low-risk zones. The absence of a significantly increased risk in the part of the bus closer to the index case suggested that airborne spread of the virus may at least partially explain the markedly high attack rate observed. Conclusions and Relevance: In this cohort study and case investigation of a community outbreak of COVID-19 in Zhejiang province, individuals who rode a bus to a worship event with a patient with COVID-19 had a higher risk of SARS-CoV-2 infection than individuals who rode another bus to the same event. Airborne spread of SARS-CoV-2 seems likely to have contributed to the high attack rate in the exposed bus. Future efforts at prevention and control must consider the potential for airborne spread of the virus.


Subject(s)
COVID-19 , Communicable Disease Control/methods , Community-Acquired Infections , Motor Vehicles/statistics & numerical data , SARS-CoV-2 , Transportation/methods , Air Pollution , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , China/epidemiology , Cohort Studies , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/prevention & control , Community-Acquired Infections/transmission , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Female , Humans , Male , Middle Aged , Risk Assessment , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL